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ABSTRACT

Diabetic nephropathy (DN) is the leading cause of end-stage renal 

disease. In addition to the renin pathway,certain bioactive 

molecules are involved in its pathogenesis. Strategies to interrupt 

pathophysiological pathways are on the horizon. Protein kinase C 

over expression is blocked by ruboxistaurin. Pentoxifylline and m-

TOR inhibitors are anti-inflammatory agents in the pathogenesis of 

diabetic nephropathy. Inhibitors of advanced glycation, oxidative 

stress have proved useful in animal models of diabetic 

nephropathy. Avosentan, an endothelin antagonist, decreases 

urinary albumin. Such targeted therapies have opened up avenues 

for researchers to develop agents that can halt and may even 

reverse the progression of diabetic nephropathy.
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INTRODUCTION

Diabetes has become the most common single cause of end-stage renal disease (ESRD) in the 

country like India. Diabetes and obesity are the two things which are interlinked with each 

other; Diabetes is mainly characterized by hyperglycemia, polyuria, polydepsia and polyphasia.

Diabetes is rapidly increasing prevalence, resulting in the profound socioeconomic effects in 

both developed and under developed countries [1-2] Diabetes is becoming an important chronic 

disease in India. In 2010, 45.5 million individuals had diabetes. By 2020, the number of 

prevalent diabetes cases will increase to 69.7 million.[3] Diabetes has number of complications 

such as Diabetic Gastropathy, Diabetic cardiomyopathy, Diabetic foot ulcer, Diabetic 

encephalopathy, Diabetic retinopathy, Diabetic neuropathy and Diabetic nephropathy etc.

DIABETIC NEPHROPATHY

Diabetic nephropathy is also known as Kimmelstiel Wilson syndrome and it was discovered in 

1936 by Clifford Wilson and Paul Kimmelstiel. It has been reported that among 4837 patients 

with chronic renal failure seen over a period of 10 years, the prevalence of DN was 30.3% 

followed by chronic interstitial nephritis (23.0%) and chronic glomerulo nephritis (17.7%).[4]

Diabetic Nephropathy (DN) is a microvascular complication affecting patients with both type 1 

and type 2 diabetes. It has become a leading cause of End stage renal disease (ESRD). Diabetic 

nephropathy is mainly characterized by structural abnormalities such as:-

1) Hypertrophy of both glomerular and tubular elements. 2) Increase in the thickness of the 

Glomerular Basement Membrane (GBM) 3) Progressive accumulation of extracellular 

components.4) Increase in GFR, Intra glomerular B.P, Subsequent proteinuria 5) Eventual loss 

of renal function.Diabetic nephropathy is a spectrum of progressive renal lesions secondary to 

diabetes mellitus ranging from renal hyperfiltration to end stage kidney disease. A diabetic 

nephropathy consists of few stages from hyperfilteration to renal disease as stated below,

Hyperfilteration

Silent                                            Incipient Nephropathy                       Overt Nephropathy ESRD                                                                           

     0        2           5                                      10-30                                                             20-40

                                                                                                        Time (years)

                                                                                               

Onset of diabetes                                                                                                                                                          

Stage 1 Stage 2 Stage 3                                   Stage 4                                                          Stage 5 

                                     Figure 1. Natural history of diabetic nephropathy 
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STAGES OF DIABETIC NEPHROPATHY[5]

 Stage 1 (hyperfilteration) Glomerular hypertension and hyperfiltration, Normal 

albuminuria: urinary albumin excretion rate  (AER) <20 μg/min, Raised GFR, normal 

serum creatinine.

 Stage 2  (Silent phase) Normoalbuminuria Structural changes on biopsy but no clinical 

manifestations. Basement membrane thickening and mesangial expansion.

 Stage 3 (incipient phase) Microalbuminuria: AER 20 – 200 μg/min, Normal serum 

creatinine, there may be increased blood pressure.

 Stage 4 (overt nephropathy) Overt “dipstick positive” proteinuria (macroalbuminuria) AER 

> 200 μg/min, Hypertension, Increase in serum creatinine with progression of Nephropathy.

 Stage 5 (End stage renal failure) GFR has fallen to <10 ml/min , renal replacement therapy 

(i.e., haemodialysis, peritoneal dialysis, kidney transplantation) is needed. 

CELLULAR AND MOLECULAR MECHANISMS IMPORTANT IN THE 

DEVELOPMENT OF NEPHROPATHY

Diabetic nephropathy occurs as a result of an interaction between hemodynamic and metabolic 

factors. Hemodynamic factors that contribute to the development of diabetic nephropathy 

include increased systemic pressure, activation of vasoactive hormone pathways including the 

renin angiotensin system and endothelin. Glucose dependent pathways are also activated within 

the diabetic kidney and result in enhanced oxidative stress, renal polyol formation.[6]

HEMODYNAMIC PATHWAYS

The hemodynamic pathways activate intracellular second messengers such as protein kinase C 

(PKC), Mitogen‐activated protein(MAP kinase), nuclear transcription factors such as NF‐kB 

and various growth factors such as the prosclerotic cytokine, TGF‐β and the permeability 

enhancing growth factor, vascular endothelial growth factor, VEGF. Any alteration in these 

cytokinines may leads to diabetic nephropathy.

METABOLIC PATHWAY         

The glucose dependent pathway is also termed as metabolic pathway, The high glucose 

concentration in chronic diabetes mellitus induces oxidative stress by generating Reactive 

oxygen species (ROS) ROS through an activation of number of enzymatic and non-enzymatic

sources in the body. The major sources of ROS in diabetes include polyol pathway, advanced 

glycation and uncoupling of NADPH oxidases. By understanding the pathomechanism of DN. 

It has helped in designing a rational approach for optimal therapy and prevention of DN.
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                    DIABETIC NEPHROPATHY

Figure 2. Interaction of hemodynamic and metabolic pathway, cytokines and intracellular 

signaling molecules mediating diabetic nephropathy 

TARGET AND TREATMENT OPTIONS

Based on its pathogenesis, the initial treatment of DN should be strict control of hyperglycemia, 

hypertension, dyslipidemia, proteinuria, and obesity and cessation of smoking.

role of thiazolidinediones (TZDs), 3

reductase inhibitors, angiotensin

receptor blockers (ARBs) in DN is already established.

understanding of the complexity of the pathog

components, and regulatory steps have been identified. Also,

has been explored, resulting in many novel drugs for the treatment and

NOVEL TARGETS: CYTOKININS

PROTEIN KINASE C (PKc) 

multifunctional isoenzymes acting as an intracellular signal transduction system for many 

hormones. There are 11 known isoenzymes that are classified in to following gr

Group A: - Conventional (cPKCs) Ca2+dependent  

                  (Activated by   phosphatidylserine (PS) and secondary messanger DAG)

Group B: - Novel (nPKCs) Ca2+

                  (Activated by   phosphatidylserine (PS) and secondary messenger DAG)

Group C: - Atypical (aPKCs) Ca2+Independent  
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DIABETIC NEPHROPATHY

Interaction of hemodynamic and metabolic pathway, cytokines and intracellular 

signaling molecules mediating diabetic nephropathy 

TREATMENT OPTIONS [7]

Based on its pathogenesis, the initial treatment of DN should be strict control of hyperglycemia, 

hypertension, dyslipidemia, proteinuria, and obesity and cessation of smoking.

role of thiazolidinediones (TZDs), 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA)

reductase inhibitors, angiotensin-converting enzyme inhibitors (ACEIs), and angiotensin 

receptor blockers (ARBs) in DN is already established. Over the past few years our 

understanding of the complexity of the pathogenesis of DN has grown as new mechanisms, 

components, and regulatory steps have been identified. Also, the potential of targeted therapies 

has been explored, resulting in many novel drugs for the treatment and prevention of DN.

CYTOKININS

PROTEIN KINASE C (PKc) Protein kinase c is a family of serine-threonine kinase that are 

multifunctional isoenzymes acting as an intracellular signal transduction system for many 

11 known isoenzymes that are classified in to following gr

Conventional (cPKCs) Ca2+dependent  α, β1, β2 and γ

(Activated by   phosphatidylserine (PS) and secondary messanger DAG)

Novel (nPKCs) Ca2+-independent  δ, ε, η and β etc

(Activated by   phosphatidylserine (PS) and secondary messenger DAG)

Atypical (aPKCs) Ca2+Independent  ζ and λ [9-10]
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In diabetes mellitus, PKC can be activated by several mechanisms, including increased DAG 

levels by de novo synthesis or inhibition of DAG kinase.PKC 

cultered mesangial cells and glomeruli .In certain studies all of these isoforms have been 

activated by high glucose level or by diabetes mellitus in mesangial cells

either directly or indirectly leads to activation of the protein kinase c pathway

causes activation of both β and δ

TGF- β and vaso- active substances such as Angiotensin, en

albuminuria which is initital symptom of nephropathy decipeted as below.

Figure:3 Protein Kinase C Pathway and Renal Disease

Among all PKC isoforms,PKC-

level.In diabetic rats,chronic hyperglycemia predominantly activates PKC

glomeruli,aortas,retina and heart.

Ruboxistaurin (RBX) Ruboxistaurin, an orally active selective inhibitor of the β

PKC, reduces the actions of vascular 

progression of diabetic retinopathy. Animal studies have shown it to normalize glomerular 

hyperfiltration and reduce TGF

apoptosis are features of DN, and

functional decline, and expression of the profibrotic and proapoptotic growth factor TGF

A specific PKC- β isoforms inhibitor,has been shown to ameliorats many functional and 

structural features of experimental diabetes.

concentrations and shows greater affinity for PKC isoforms as compared to other isoforms.

RBX inhibited PKC activity,arachidonic acid release and PGE

k+- ATPase activity.[15]
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In diabetes mellitus, PKC can be activated by several mechanisms, including increased DAG 

ynthesis or inhibition of DAG kinase.PKC α, β1, β2 and γ were observed in 

cultered mesangial cells and glomeruli .In certain studies all of these isoforms have been 

activated by high glucose level or by diabetes mellitus in mesangial cells [11] 

either directly or indirectly leads to activation of the protein kinase c pathway which ultimately 

δ isoforms and causes release of fibrotic factors such as CTGF, 

active substances such as Angiotensin, endothelin – 1 and ultimately leads to 

albuminuria which is initital symptom of nephropathy decipeted as below.

Figure:3 Protein Kinase C Pathway and Renal Disease

- β isoforms may be the most sensitive to change in the DAG 

In diabetic rats,chronic hyperglycemia predominantly activates PKC- β2

glomeruli,aortas,retina and heart.[12]

Ruboxistaurin, an orally active selective inhibitor of the β

PKC, reduces the actions of vascular endothelial growth factor (VEGF) and attenuates the 

progression of diabetic retinopathy. Animal studies have shown it to normalize glomerular 

reduce TGF-β levels and proteinuria. Excess matrix, hypertrophy, and 

DN, and ruboxistaurin has been shown to attenuate histological injury, 

functional decline, and expression of the profibrotic and proapoptotic growth factor TGF

β isoforms inhibitor,has been shown to ameliorats many functional and 

ural features of experimental diabetes.[13-14] RBX inhibits PKC β1 and β2 

concentrations and shows greater affinity for PKC isoforms as compared to other isoforms.

RBX inhibited PKC activity,arachidonic acid release and PGE2 production and
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endothelial growth factor (VEGF) and attenuates the 

progression of diabetic retinopathy. Animal studies have shown it to normalize glomerular 

β levels and proteinuria. Excess matrix, hypertrophy, and 

ruboxistaurin has been shown to attenuate histological injury, 

functional decline, and expression of the profibrotic and proapoptotic growth factor TGF-β.

β isoforms inhibitor,has been shown to ameliorats many functional and 

at nanomolecule 

concentrations and shows greater affinity for PKC isoforms as compared to other isoforms.

normalized Na+-
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TRANSFORMING GROWTH FACTOR-BETA (TGF-B)

The TGF- β superfamily encompasses three isoforms, TGF- β l, β 2, and β 3, each encoded by a 

distinct gene, and all expressed in the kidney. In normal rats TGF- β 1 mRNA was detected in 

glomeruli and all segments of renal tubules,predominantly in distal tubules.[16] TGF- β1 is 

known to be involved in renal fibrogenesis, which potentially leads to diabetic nephropathy.[17]

TheTGF- β 1 membrane receptor complex, consists of two families of proteins with serine–

threonine kinase activity, namely TGF- β RII and TGF- β RI.TGF- β 1 activates its receptors 

through a combination of two pathways. In the first pathway, TGF- β 1 combines with TGF- β 

RIII and then transfers to TGF- β RII. In the second pathway, TGF- β 1 combines directly with 

TGF- β RII . The two pathways ultimately lead to phosphorylation of TGF- β RII after its 

activation to a (TGF- β 1)–(TGF- β RII) complex. The complex recruits and phosphorylates 

TGF- β RI after which phosphorylated TGF- β RI continues to phosphorylate its downstream 

functional proteins, Smad2, Smad3 etc. Phosphorylation of Smad2 and Smad3 leads to their 

translocation into the nucleus and subsequently to tissue fibrosis. [18-19] TGF- β RII plays a key 

role during phosphorylation and activation of TGF- β RI receptors and small mothers against 

decapentaplegic (Smads)Smad transcriptional regulators. In the absence of TGF- β RII, TGF-b 

has no affinity for TGF- β RI. Therefore, inhibiting the phosphorylation of TGF- β 1 and its 

receptors is one way to prevent renal fibrosis. 

Figure 4. Schematic depicting TGF-b1 signalling.

TGF-b binds to its type II serine/threonine kinase receptor and instigates autophophorylation 

permitting the recruitment of the type I receptor. This interaction forms an activated heteromeric 

complex and facilitates phosphorylation of the receptor-regulated Smad2/3 small mothers 

against decapentaplegic (SMADs), promoting interaction with common Smad4. The active 

Smad2/3/4 complex translocates to the nucleus where it regulates the transcription of TGF-b1 
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target genes. TGF-b1 signalling is stringently regulated, and depends on both inhibitory 

Smads6/7 and transcriptional co-repressors that include SnoN, Ski, TGIF that help modify net 

cellular effects. Various approaches have been proposed either to block TGF- β receptor or 

TGF- β anti-body as summarized as below.

1) Nicousamide, a potent inhibitor of phosphorylation by TGF-b receptor II [20]

Renal fibrogenesis is related to the development of diabetic nephropathy.TGF- β receptor II 

(TGF- β  RII) plays a vital role during renal fibrogenesis by phosphorylation and activation of 

type I receptors and downstream regulators. Nicousamide is a class of drug, which can inhibit 

renal fibrosis in animal models of diabetic nephropathy.

                                                     

                  Figure 5. Chemical structure of nicousamide (C18H12N2O9 _H2O).

Studies in rat models of 5/6 nephrectomy and streptozotocin (STZ) induced diabetic 

nephropathy have shown that nicousamide can alleviate renal failure and reduce 

glomerulosclerosis and interstitial fibrosis by inhibiting renin and phosphorylation of TGF- β 

RII. In this respect it is better than benazepril and equipotent with losartan.

2)  Decorin 

Decorin belongs to the family of small leucine-rich proteoglycans (SLRPs). It is overexpressed 

in diabetic kidneys and has been suggested to act as a protective factor. [22] Decorin is capable of 

forming complexes with all three isoforms of TGF- β, leading to inhibition and/or sequestration 

of this cytokine within the extracellular matrix. [23]

3)  Antibody TGF- β therapy

Diabetic nephropathy can be targeted by antibody TGF- β therapy. Early administration of pan-

anti-TGF-β antibody to mice with streptozotocin-induced diabetes prevented glomerular 

enlargement and suppressed expression of genes encoding extracellular matrix components. [24]

Antibody therapy almost completely prevented and sometimes even reversed the established 

lesions of diabetes and preserved renal function in db/db mice. [25]

PLASMINOGEN ACTIVATOR INHIBITOR-1

Plasminogen activator inhibitor-1 (PAI-1) prevents conversion of tissue plasminogen activator 

and urokinase plasminogen activator (uPA) to plasminogen.[26]. Plasmin, the active form of 

plasminogen, is a broad-spectrum protease that degrades fibrin clots and extracellular matrix 

(ECM) proteins. In diabetic nephropathy, accumulation of ECM proteins in the mesangium 
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leads to glomerulosclerosis, the hallmark of diabetic nephropathy. In normal human kidney, 

PAI-1 levels are undetectable, but in diabetes, PAI-1 expression is up-regulated in renal 

glomeruli and arteries.[27] Several experimental and clinical studies support the role for PAI-1 in 

the renal fibrogenic process that occurs in chronic glomerulonephritis, DN etc. Inhibition of 

PAI-I activity or of PAI-I synthesis by specific antibodies, peptidic antagonists, antisense 

oligonucleotides, or decoy oligonucleotides has been obtained in vitro, but needs to be evaluated 

in vivo regarding the prevention or treatment of renal fibrosis.[28,29] Disruption of the PAI-I gene 

protects mice against DN. Some novel, orally active, small molecule substances— TM-5001, 

TM-5007, TM-5275—were identified. In vitro, inhibited PAI-I activity and formation of a PAI-

I–tissue plasminogen activator (t-PA) complex, and they enhanced fibrinolysis. [30, 31]

m-TOR INHIBITON   

A serine/threonine kinase, mTOR plays a pivotal role in mediating cell size, mass, proliferation, 

and survival. mTOR has also emerged as an important modulator of several forms of renal 

disease. Renal enlargementis due to the hypertrophy of existing glomerular cells.[32] A number 

of studies have shown that activation of mTOR plays a pivotal role in physiologic and 

pathologic forms of hypertrophy in the kidney and other organs, including the renal hypertrophy 

characteristic of DN. Hyperglycemia stimulates Mtor, mTOR is activated within the kidney in 

DN. Hyperglycemia activates PI3K and Akt and inhibits AMPK. The activation of Akt and 

inhibition of AMPK lead to activation of mTORC1. Activation of mTORC1 contributes to the 

renal changes characteristic of DN, including glomerular hypertrophy, glomerular basement 

membrane (GBM) thickening, and the accumulation of mesangial matrix.[33]

Figure 6. Hyperglycemia, mTOR activation and action of rapamycin.
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Intracellular effects of Rapamycin through mammalian target of rapamycin pathway (mTOR). 

mTOR-Raptor complex is sensitive to Rapamycin however mTOR-Rictor complex is resistant 

to effects of Rapamycin. eukaryotic initiation factor 4EIGF-1; Insulin-like growth factor 1, 

PI3K; Phosphotidylinositol 3 kinase, PDK1; Phosphotidylinositol-dependent-kinase-1, Akt; 

protein kinase B, TSC1,2; Tuberosclerosis complex 1,2 Rheb; Rashomolog- enriched in brain 

act as Ras-related small GTPase Raptor; Rapamycin-sensitive adaptor protein, eIF4E; 

eukaryotic initiation factor 4E, 4EBP; eukaryotic initiation factor 4E binding protein, Pol II; 

polymerase II.

Sirolimus

Sirolimus (Rapamycin, RapamuneR) is a macrolide, product of the fermentation of an 

actinomycete, Streptomyces hygroscopicus, isolated (1975) from a soil sample in Rapa Nui 

(Easter Island), having a structure similar to tacrolimus (TaC) and to macrolide antibiotics.[34]

The potential therapeutic role of mTOR inhibition in patients with autosomal dominant 

polycystic kidney diseases is being evaluvated in clinical trials.[35]

VASOACTIVE SUBSTANCES

ENDOTHELIN – 1 Endothelin‐1 (ET‐1) is a potent vasoconstrictor peptide produced by 

vascular endothelium from big ET‐1 via specific cleavage by endothelium converting enzyme 

(ECE). ET‐1 produces its actions by acting on endothelin ETA and ETB receptors. [35, 36] ETB 

receptors on endothelial cells mediate vasodilation through the production of nitric oxide and 

prostacyclins.[37] ET‐1 is involved in the pathogenesis of cardiovascular disorders such as 

hypertension and heart failure including diabetic nephropathy. It was shown that 

diabetes‐induced elevated level of renal ET‐1 may induce glomerular hyperperfusion and 

damage.[37] It has been documented that ET‐1 activates a variety of signalling systems to induce 

contraction, hypertrophy in mesangial cells. ET-1 is also a potent proinflammatory and 

profibrotic mediator.

         1)Darusentan   (LU135252)

It has indeed been shown that prolonged application of the endothelin A (ETA) receptor 

antagonist darusentan (LU135252) was able to prevent the progression of diabetic nephropathy 

and to improve endothelium-dependent relaxation in mesenteric microvessels. [39, 40, 41]

             2) Bosentan

It has been observed that bosentan also completely prevented the development of hypertension

and renal vasoconstriction, and largely prevented the development of proteinuria and renal 

structural injury in wistar rats.[42]
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        3) Avosentan

Avosetan significantly decreased albuminuria in clinical study and found to be effective in the 

reduction of miroalbuminuria. Avosentan is a nonpeptidergic, once-daily, orally available 

endothelin-A (ETA) antagonist that is currently in clinical development for the treatment of DN. 

Endothelin antagonists have shown anti-inflammatory effects in experimental studies. [43, 44]

UROTENSIN

Human urotensin-II (U-II) is a cyclic peptide of 11 amino acids, with a molecular weight of 

~1,388. U-II has been identified as an endogenous ligand for G-protein coupled receptor 14 

(GPR14), which is now known as UT receptor [45]. Both U-II and UT receptor are expressed in 

different tissues, including the cardiovasculature, brain, kidney, atherosclerotic plaques in the 

coronary and carotid arteries, and abdominal aortic aneurysms.[46] U-II is the most potent 

vasoconstrictor identified to date, with a potency 1–2 order of magnitude greater than that of 

endothelin-1 (ET-1), and UII has been shown to play an important role in the pathogenesis Of 

pulmonary artery hypertension and remodeling. The main sources of circulating U-II are thought 

to be the heart, liver, kidney, vascular endothelium, and lymphocytes [47, 48].

Urotensin II (UII) is initially isolated from the caudal neurosecretory system of teleost fish.

Plasma concentrations of UII are elevated in patients with hypertension , congestive heart 

failure, chronic renal failure and diabetes mellitus. UT is expressed in glomerular arterioles, 

thin ascending limbs, and inner medullary collecting ducts . High-affinity binding of human 

125IUII has been reported in the human kidney. [49]

Palosuran

A selective UT receptor antagonist, palosuran (ACT-058362; Actelion Pharmaceuticals Ltd., 

Allschwil, Switzerland) was found to be an effective in diabetes. Preliminary data from a series 

of three clinical proof-of-concept studies of palosuran in diabetic nephropathy patients do not 

suggest a major efficacy, at the doses used, the duration of treatment applied, for the patients 

examined. [50,51]

VASOPRESSIN

Vasopressin plays an important role in the cardiovascular and renal diseases. It is previously 

known as anti-diuretic hormone. It is secreted from posterior pituitary lobe when osmolarity 

increases.[52] It’s renal effects are mediated through the V1a- receptor localized in the mesangial 

cells, efferent arterioles, vasa recta and medullary interstitial cells, which induce an increase in 

glomerular filtration rate and the V2 receptors localized in collecting duct which prevents water 

and sodium loss.[53] By acting through these V1a- receptors vasopressin causes vaso constriction, 
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proliferation and hypertrophy of mesangial cells leading to decrease in the filtration rate and 

ultra-filtration coefficient. Therefore various approaches have been made to block or antagonize 

V1a- receptors as mentioned below.

1) OPC 21268

It is recently developed an orally non-peptidic AVP V1 antagonist. It causes a decrease in 

urinary albumin excretion due partly to decrease the intraglomerular pressure .This molecule is 

under clinical trials and results regarding their effects on patients is still awaited. [54]  

2) YM 218

The V1a-receptor antagonist, YM218, protects against the early progression of renal injury 

caused by a reduction in nephron number. Where as its effectiveness seems limited in 

established renal damage caused by deteriorating function of previously healthy nephrons. [55, 56]

VASOPEPTIDASE INHIBITORS

Vasopeptidase inhibitors simultaneously inhibit the enzymes angiotensin-converting enzyme 

(ACE) and neutral endopeptidase (NEP).[57] Neutral endopeptidase (NEP)  is cell membrane 

associated zinc metalloprotease, NEP is the major enzyme responsible for the degradation of the 

natriuretic peptides, and its inhibition leads to increases in the levels of these vasorelaxant, 

diuretic and natriuretic peptides.It is particularly abundant in membranes of brush border 

epithelial cells of intestine and kidney.[58] While ACE inhibition prevents the formation of the 

vasoconstrictor, anti-natriuretic and trophic hormone angiotensin II. Part of the pharmacological 

action of ACE inhibitors is based on inhibition of bradykinin degradation, leading to increased 

stimulation of the bradykinin B2 receptor. As bradykinin is degraded by both ACE and neutral 

endopeptidase, simultaneous inhibition of both enzymes by the novel vasopeptidase inhibitors is 

supposed to increase renal bradykinin concentrations and protect the diabetic kidney even more 

effectively than selective ACE inhibition alone. However, the relative role of bradykinin in the 

therapeutic action of vasopeptidase inhibitors in diabetic nephropathy has not been investigated 

so far. Recent data indicate that indeed, vasopeptidase inhibitors possibly related to their greater 

potency in increasing tissue bradykinin concentrations. [59, 60]

1) Omapatrilat

The vasopeptidase inhibitor omapatrilat has shown superior nephroprotection over selective 

ACE inhibition in nondiabetic nephropathy.[61] Omapatrilat is a vasopeptidase inhibitor that 

causes significant inhibition of tissue ACE and NEP, Both the degree and site of tissue enzyme 

inhibition by omapatrilat may be relevant to effects on various substrates, as well as to end-

organ protection and side-effect profiles.[62]    
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2) AVE7688

AVE7688 prevents nephropathy in  the Zucker diabetic fatty (ZDF) rat, a type II diabetes animal 

model, when treatment is started early and reduces proteinuria when diabetes and nephropathy 

are established, chronic vasopeptidase inhibition with AVE7688 reduces albuminuria and 

morphological kidney damage in rats with established diabetes and nephropathy.[63,64]

OXIDATIVE STRESS

High glucose concentration in chronic diabetes mellitus induces oxidative stress by generating 

ROS through an activation of number of enzymatic and non-enzymatic sources in the body. The 

major sources of ROS in diabetes include polyol pathway, uncoupling of NADPH oxidases. [65]

NADPH OXIDASE PATHWAY [NADPH oxidase inhibitors]

In diabetes, NADPH oxidase is a major source of generation of ROS. NADPH oxidase is 

located in plasma membrane of various renal cell types, including mesangial and proximal 

tubular cells, vascular smooth muscle cells, endothelial cells and fibroblasts.

Due to activation of NADPH oxidase enzyme, it generates superoxides known as reactive free 

radicals.[66] The NADPH oxidase complex comprises several isoforms, now designated as the 

nox family, particularly nox4 isoform, a 578-amino acid protein and a major source of ROS in 

the renal milieu and thus NADPH oxidase dependent overproduction of ROS play a key role in 

promoting hyperglycemia-induced oxidative stress.[67] The NADPH oxidase increase oxidative 

stress and finally results in development of diabetic nephropathy in rats. Thus, NADPH oxidase 

may be one of potential target deserving further investigation in the development of drug in the 

treatment of diabetic nephropathy.[68]

EX. 1) Apocynin  [69]

Apocynin attenuated diabetes-associated increases in albuminuria. Finally, renal extracellular 

matrix accumulation of fibronectin and collagen IV was decreased by apocynin. 

Polyol pathway [Aldose reductase inhibitors]

In cell, unused glucose in the cytosol is diverted to the polyol pathway, which involves two 

enzymatic reactions: the first is the reduction of glucose to Sorbitol by the action of aldose 

reductase, and the second oxidation of sorbitol to fructose by the action of Sorbitol 

dehydrogenase. Reduction of glucose to sorbitol uses NADPH and oxidation of sorbitol 

increases NADPH with a resultant rapid change in the cytoplasmic redox state and enhanced 

production of ROS. Hence, polyol pathway is considered as a major source of ROS generation 

in the pathogenesis of diabetic nephropathy. A number of studies have shown a decrease in 

urinary albumin excretion in animals administered aldose reductase inhibitors.
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EX. 1) Epalrestat [70]

Epalrestat (Ono Pharmaceutical, Co. Ltd., Osaka, Japan) is one of the carboxylic acid 

derivatives which inhibit aldose reductase, an enzyme of the sorbitol (polyol) pathway. 

Epalrestat, prevents the progression of diabetic nephropathy in rats.

2) Zopolrestat [71]

Zopolrestat restored the hyporesponsiveness of diabetic rats to antigen provocation, in parallel 

with impairment of alloxan-induced mast cell depletion and hypercorticolism, indicating that 

polyol pathway activity seems to play an important role in diabetes induced nephropathy.

ADVANCED GLYCATION END PRODUCTS (AGE) INHIBITORS

Advanced glycation end products (AGEs) are diverse group of molecules and are well known 

heterogenous compounds formed non-enzymatically through an interaction of reducing sugar 

with free amino group of proteins, lipids and nucleic acids. Reducing sugars can react non-

enzymatically with the amino groups of proteins to form reversible Schiff bases. These early 

glycation products undergo further complex reactions such as rearrangement, dehydration and 

condensation to become irreversibly cross-linked, heterogeneous fluorescent derivatives termed 

AGEs. The AGE9 receptor has been recently described. Its activation by the AGE has been 

shown to play an important part in the pathogenesis of DN and other nephropathies . 

Figure 7.Pathophysiological role of the AGE-RAGE axis in diabetic nephropathy

AGE’s  are mainly the component of interest of which  receptor for AGE is mainly targeted for 

nephropathy as summarized below.

EX.
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A: pyridoxamine [72] pyridoxamine (PM), and aminoguanidine protects against renal structural 

lesions, proteinuria and renal function loss in experimental diabetes.

B: Novel AGE-Inhibitors 

1) LR-9, 4-(2-naphtylcarboxamido) phenoxyisobutyric acid 

2) LR-20, L-bis-4[-(4-chlorobenzamidophenoxyisobutyryl) cystine 

C: Novel AGE-Breakers 

I. LR-20, L-bis-4[-(4-chlorobenzamidophenoxyisobutyryl)cystine

II. LR-23,4-(3,5-dichlorophenylureido)-phenoxyisobutyryl-l-amidocyclohexane-1-carboxylic acid

III. LR-99, 4-[(3,5-dichlorophenylureidophenoxyisobutyryl]-4-aminobenzoic acid)]

IV. LR-102, 1,4-benzene-bis [4-methyleneaminophenoxyisobutyric acid].

V. SMR-5, 5-aminosalicylic acid (5-ASA)

VI. SMR-12, dimethylbiguanide (metformin)  
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