International Journal of Institutional Pharmacy and Life Sciences 3(5): September-October 2013

INTERNATIONAL JOURNAL OF INSTITUTIONAL PHARMACY AND LIFE SCIENCES

Life Sciences

Research Article.....!!!

Received: 14-11-2012; Revised; Accepted: 25-10-2013

GC/MS SPECTROSCOPIC ANALYSIS OF SOME DIFFERENT *IN VIVO* METHANOLIC PLANT EXTRACTS OF MAYTENUS *EMARGINATA* (WILLD.): AN IMPORTANT MEDICINAL PLANT

Savita Sagwan*, D. V. Rao and R. A. Sharma

Plant tissue culture and Biotechnology lab, Department of Botany, University of Rajasthan, Jaipur

Keywords:

GC/MS spectroscopy,
volatile organic
compounds, Saturated fatty
acid, Phytosterols,
Aromatic compound,
Sesquiterpenes

For Correspondence:

Savita Sagwan

Plant tissue culture and Biotechnology lab, Department of Botany, University of Rajasthan, Jaipur

E-mail:

savita.sagwan@gmail.com

ABSTRACT

Maytenus emarginata (Willd.) is one of the medicinally important plants belonging to the family Celastraceae, commonly known as "Malkangni" in Hindi and "Thorny staff tree"in English. In the present study the Methanolic extract of root, stem, leaves and fruits of Maytenus emarginata has been subjected to GC-MS analysis. A total of 34, 29, 39 and 56 compounds were identified from leaf, root, fruit and stem have been identified, respectively. A variety of volatile organic compounds have been detected in this plant species pentadecanoic acid (Saturated fatty acid), including cholesterol, stigmasterol, β-sitosterol (phytosterols), tridecane, dodecane (alkane hydrocabon), glycerin (alcohol), myo-inositol (aromatic compound), evonine (alkaloid), hexadecen-1ol (terpene alcohol), hexadecanoic acid (palmitic acid), phytol (diterpene), octadecadienoic acid (linoleic acid), tocopherol (vitamin-E) and squalene, lupeol, betulin (triterpene), valerenol, alpha- caryophyllene, sclareolide (sesquiterpenes) with various proportions.

INTRODUCTION

In the plant kingdom, there are thousands of plants known and unknown that yield medicine or drugs use to man. These plants are known as medicinal or drug plants, which are the chemical gold mines existing in the ecosystems to get the disease of men and animals cured in the natural way¹. Plants are the traditional sources for many chemicals used as pharmaceutical biochemicals, fragrances, food colours and flavours². Medicinal plants are at great interest to the researcher in the field of biotechnology, as most of the drug industries depend in part on plants for the production of pharmaceutical compounds.

Maytenus emarginata (Family: Celastraceae), is a traditionally valuable plant. The celastraceae family, commonly known as bittersweet family, comprising about 50 genera and 800 species, is indigenous to tropical and sub-tropical regions of the world, including North Africa, South America, and many parts of East Asia, particularly China ^{3,4}. Plants of this family generally grow as small trees, bushes or lianas and have resinous stems and leaves. They have been valued since antiquity because their extracts have useful medicinal properties ⁵. The crude plant extracts of the celastraceae in traditional medicine and agriculture is astonishing, and includes stimulant, restorative, male contraceptive, anti-tumor, anti-leukemic, anti-bacterial, insecticidal and insect repellent activities⁶. Traditionally species of *Maytenus* has been used for fever, asthama, rheumatism and gastrointestinal disorders worldwide. Recently some biomolecules from Maytenus species has been reported to be active against HIV-Protease⁷ Carcinoma and leukemia⁸. Ulcers and MDR (Multi Drug Resistance) ⁹. Roots of Maytenus emarginata used in gastrointestinal troubles, especially dysentery 10. Tender shoots of the plant help for mouth ulcer. The bark is ground to a paste and applied with mustard oil to kill lice in the hair. Pulverized leaves of Maytenus *emarginata* are given in milk to children as a vermifuge¹¹.

A decoction of the leafy twigs is used as a mouthwash to relieve toothache. Ash of leaves used to heal up sores and wound gives cooling effect. The leaves are burnt and mixed with ghee to form an ointment used to heal sores ¹². The tender leaves are chewed raw in the treatment of jaundice. The fruits are used in medicines to purify blood ¹³. There is no report of chemical constituents isolated from this plant. The objective of this study was to evaluate the phytochemical compounds (quantitative method) using GC-MS analysis.

MATERIAL AND METHOD

(i) Collection of plant material

Plant of *Maytenus emarginata* was collected from the campus of University of Rajasthan. Specimens were compared with the voucher specimens at Herbarium of Department of Botany, University of Rajasthan, Jaipur.

(ii) Preparation of plant material

The fresh plant samples (root, stem, leaf, fruits) were collected and washed individually under running tap water to remove soil particles and other dirt. All the samples were dried firstly at 60°C for 2 days in an oven after that live it on room temperature. They were then macerated to powder form with a mixer grinder. The powder was stored in air sealed polythene bags at room temperature before extraction.

(iii) Preparation of sample for GC/MS study

About 20 grams of the each plant part powdered were soaked in 100 ml methanol individually. It was left for 24 hours so that alkaloids, terpenoids and other constituents if present will get dissolved. The methanol extract was filtered using Whatman No.1 filter paper and the residue was removed. It was again filtered through sodium sulphate in order to remove the traces of moisture.

(iv) Gas chromatography – Mass Spectrum analysis

GC Programme

Column: Elite-1 (100% Dimethyl poly siloxane), 30 × 0.25mm × 1 mdf

Equipment: QP 2010 Plus SHIMADZU Carrier gas: 1ml per min, Split: 10:1

Detector: Mass detector: Turbo mass gold-Perkin Elmer

Software: Turbomass 5.2 and

Sample injected: 2 µl

Oven temperature programme	MS Programme				
110° C-2 min hold	Library used: NIST Library / Wiley				
Up to 200° C at the rate of 10° C / min- 1 min	Library				
hold	Inlet line temperature: 200° C				
Up to 280° C at the rate of 5° C / min-9 min	Source temperature: 200° C				
hold	Electron energy: 70 eV				
Injector temperature: 250° C and	Mass scan: (m/z): 45-450				
Total GC running time: 36 min	Total MS running time: 40 min				

RESULTS AND DISCUSSION

Photochemistry is the study of phytochemicals, which are secondary metabolic substances found in plants. Many of these are known to provide protection against insect attacks and plant diseases. Phytochemical analysis mainly applies to the quality control of Chinese medicine or herbal medicine to determine the various chemical components, such as saponins, alkaloids, volatile oils, flavonoids and anthraquinones.

The present study carried out on the *Maytenus emarginata* the presence of medicinal active constituents. In the GC-MS analysis, phytochemical compounds were identified in the methanolic extract of root, stem, leaf and fruits of this plant. The identification of phytochemical compounds is based on the peak area, molecular weight and molecular formula. The results are presented in Table 1 to 4.

Table-1: Activity of phytocomponents identified in the methanolic root extract of *M. emarginata*.

S.No	R.T	Name of the Compound	Peak Area %	M.F	M.Wt	Compound Nature
1.	9.770	Tridecane	0.68	$C_{13}H_{28}$	184.35	Alkane hydrocarbon
2.	10.654	Pentadecane	0.92	$C_{15} H_{32}$	212	Fragrance agents
3.	11.425	1-hexadecanol	0.18	$C_{16}H_{34}O$	242	Fatty alcohol
4.	11.475	Trichloroacetic acid, dodecyl ester	0.56	$C_{14}H_{25}C_{13}O_2$	330	
5.	12.653	1,2-Dimethyl-3,5-	0.52	$C_{12}H_{20}$	164	
		divinylcyclohexane				
6.	12.725	Tetradecanoic acid	0.46	$C_{14}H_{28}O_2$	228.37	Saturated fatty acid
		(Myristic acid)				
7.	13.613	Diisobutyl Phthalate	0.74	$C_{16}H_{22}O_4$	278.35	
8.	13.866	Pentadecanoic acid, 14-methyl-,	0.67	$C_{17}H_{34}O_2$	270	Fatty acid
		methyl ester				
9.	14.113	n-Hexadecanoic acid	8.16	$C_{16}H_{32}O_2$	256	Fatty acid
		(Palmitic acid)				
10.	14.518	Eicosanoic acid, methyl ester	0.39	$C_{21}H_{42}O_2$	326	Fatty acid
11.	15.016	9-Hexadecenoic acid, methyl ester,	1.12	$C_{17}H_{32}O_2$	268	Fatty acid
		(Z)-		~		
12.	15.139	Octadecanoic acid, methyl ester	0.55	$C_{19}H_{38}O_2$	298	Fatty acid
13.	15.265	9-Octadecenoic acid (Z)-	11.93	$C_{18}H_{34}O_2$	282	Unsaturated fatty acid
	4.5.0.5	(Oleic Acid)		G 11 0	201	9 1 2 1 1
14.	15.367	Octadecanoic acid (Stearic acid)	4.32	$C_{18}H_{36}O_2$	284	Saturated fatty acid
15.	17.025	Hexadecanal	0.35	C ₁₆ H ₃₂ O	240	Aldehyde
16.	17.250	2-Ethyl-9,10-anthracenediol	0.78	$C_{16}H_{14}O_2$	238	
17.	17.635	Palmitic acid .betamonoglyceride	2.52	$C_{19}H_{38}O_4$	330	
18.	17.700	n-Octadecanal	0.51	$C_{18}H_{36}O$	268	Aldehyde
19.	17.927	Diisooctyl phthalate	0.62	$C_{24}H_{38}O_4$	390.56	
20.	18.808	Cyclocarbosilane	0.80	$C_3H_{12}Si_3$	132	
21.	19.224	alphaMonostearin	17.63	$C_{21}H_{42}O_4$	358	
22.	20.232	Squalene	0.70	$C_{30}H_{50}$	410.72	Triterpene
23.	25.148	Cholesterol	1.50	$C_{30}H_{50}$	410.72	Phytosterol
24.	29.381	B-Sitosterol	7.11	$C_{29}H_{50}O$	414.71	Phytosterol
25.	30.109	Methyl commate C	1.84	$C_{31}H_{50}O_4$	486	Triterpenes glycoside
26.	30.814	Methyl commate A	26.56	$C_{32}H_{52}O_4$	500	Triterpenes glycoside
27.	31.332	Lupeol	3.18	$C_{30}H_{50}O$	426.73	Triterpenoid
28.	31.995	Farnesyl bromide	2.42	$C_{15}H_{25}Br$	284	
29.	32.418	Longifolenaldehyde	1.91	$C_{15}H_{24}O$	220.35	

Table-2: Activity of phytocomponents identified in the methanolic stem extract of *M. emarginata*.

S.No	R.T	Name of the	Peak	M.F	M.Wt	Compound Nature
		Compound	Area %			
1.	9.770	Tridecane	0.37	$C_{13}H_{28}$	184.35	Alkane hydrocarbon
2.	10.654	Pentadecane	0.56	C ₁₅ H ₃₂	212	Fragrance agents
3.	11.475	Trichloroacetic acid, dodecyl ester	0.48	C ₁₄ H ₂₅ C ₁₃ O ₂	330	
4.	11.596	Sorbitol	1.18	C ₆ H ₁₄ O ₆	182.17	Sugar alcohol
5.	13.613	Diisobutyl Phthalate	0.37	C ₁₆ H ₂₂ O ₄	278.35	
6.	13.867	Pentadecanoic acid, 14- methyl-, methyl ester	0.72	$C_{17}H_{34}O_2$	270	
7.	14.123	n-Hexadecanoic acid (Palmitic acid)	10.48	$C_{16}H_{32}O_2$	256	Saturated fatty acid
8.	15.018	9-Octadecenoic acid (Oleic acid)	1.07	$C_{18}H_{34}O_2$	282.46	Unsaturated fatty acid
9.	15.141	Octadecanoic acid, methyl ester	0.43	$C_{19}H_{38}O_2$	298	Unsaturated fatty acid
10.	15.282	9-Octadecenoic acid (Z)- (Oleic acid)	19.86	$C_{18}H_{34}O_2$	282	Unsaturated fatty acid
11.	15.378	Octadecanoic acid (Stearic acid)	5.87	$C_{18}H_{36}O_2$	284	Saturated fatty acid
12.	17.425	1-Heneicosyl formate	0.93	$C_{22}H_{44}O_2$	340	Volatile and semivolatile organic compound
13.	17.637	Palmitic acid .beta monoglyceride	1.65	C ₁₉ H ₃₈ O ₄	330	
14.	17.931	1,2-Benzenedicarboxylic acid, dioctyl ester	0.46	$C_{24}H_{38}O_4$	390	
15.	18.106	Pentadecane, 8-hexyl-	0.34	$C_{21}H_{44}$	296	
16.	18.933	1-Eicosanol	0.35	$C_{20}H_{42}O$	298	
17.	19.105	2-[5-(2-Methyl- benzooxazol-7-yl)-1H- pyrazol-3-yl]-phenol	1.80	$C_{17}H_{13}N_3O_2$	291	
18.	19.227	alphaMonostearin	13.47	$C_{21}H_{42}O_4$	358	
19.	19.736	1-Hentetracontanol	0.71	$C_{41}H_{84}O$	592	
20.	20.767	n-Tetratetracontane	0.94	$C_{44}H_{90}$	619.19	
21.	24.399	4,6-Cholestadien- 3.betaol	0.65	C ₂₇ H ₄₄ O	384.64	
22.	25.152	Cholesterol	1.18	$C_{30}H_{50}$	410.72	Triterpene
23.	27.451	n-Tetracosano (Lignoceric alcohol)	1.25	$C_{24}H_{50}O$	354	
24.	29.387	BetaSitosterol	4.98	$C_{29}H_{50}O$	414	Phytosterol
25.	30.814	Methyl commate A	12.95	$C_{32}H_{52}O_4$	500	Triterpenes glycoside
26.	31.349	Lupeol	2.94	$C_{30}H_{50}O$	426.73	Triterpenoid
27.	32.012	Betulin	3.72	$C_{30}H_{50}O_2$	442.72	Triterpene
28.	36.652	Friedelin	6.15	$C_{30}H_{50}O$	426	Triterpene
29.	37.261	AlphaBisabolol	4.15	$C_{15}H_{26}O$	222	Unsaturated sesquiterpene alcohol

Table-3: Activity of phytocomponents identified in the methanolic leaf extract of *M. emarginata*.

S.No	R.T	Name of the Compound	Peak Area	M.F	M.Wt	Compound Nature
		Compound	%			
1.	10.653	Pentadecane	0.38	C ₁₅ H ₃₂	212	Fragrance agents
2.	10.861	Levoglucosan	2.41	$C_6H_{10}O_5$	162.14	Organic compound
3.	11.636	1,4-Anhydro-d-	2.73	$C_6H_{12}O_5$	164.14	5
		galactitol		0 12 0		
4.	12.721	Tetradecanoic acid	0.34	$C_{14}H_{28}O_2$	228.37	Saturated fatty acid
		(Myristic acid)			1	
5.	13.294	Neophytadiene	2.26	$C_{20}H_{38}$	278.51	1 0 1
6.	13.598	Linoleic acid	1.38	$C_{18}H_{32}O_2$	280.45	unsaturated fatty acid (carboxylic acid)
7.	13.866	Pentadecanoic acid, 14-methyl-, methyl	0.43	$C_{17}H_{34}O_2$	270	fatty acid
	1.4.110	ester		G II 0	256	0
8.	14.119	n-Hexadecanoic acid (Palmitic acid)	7.16	$C_{16}H_{32}O_2$	256	fatty acid
9.	15.017	Palmitoleic acid methyl ester	0.72	$C_{17}H_{32}O_2$	268.43	unsaturated fatty acid
10.	15.120	3,7,11,15- Tetramethyl-2- hexadecen-1-ol (Phytol)	1.26	${ m C_{20}H_{40}O}$	296.53	Diterpene alcohol
11.	15.266	9-Octadecenoic acid (Oleic Acid)	6.08	$C_{18}H_{34}O_2$	282	unsaturated fatty acid
12.	15.369	Octadecanoic acid (Stearic acid)	2.18	$C_{18}H_{36}O_2$	284	Saturated fatty acid
13.	17.635	Palmitic acid .beta monoglyceride	0.80	$C_{19}H_{38}O_4$	330	
14.	18.086	n-Hexadecane sulfonyl chloride	0.34	C ₁₆ H ₃₃ ClO ₂ S	324	
15.	18.877	N-Hexacosane	0.83	C ₂₆ H ₅₄	366.71	
16.	18.993	Octadecanedioic acid	0.70	C ₁₈ H ₃₄ O ₄	314	
17.	19.224	AlphaMonostearin	8.17	C ₂₁ H ₄₂ O ₄	358	Saturated fatty acid
18.	19.733	1-Hentetracontanol	0.45	C ₄₁ H ₈₄ O	592	
19.	20.235	Squalene	3.52	C ₃₀ H ₅₀	410.72	Triterpene
20.	20.763	Nonacosane	0.82	$C_{29}H_{60}$	408	Hydrocarbon
21.	20.877	9-Tricosene, (Z)	0.40	$C_{23}H_{46}$	322	
22.	23.353	gammaTocopherol	0.69	$C_{28}H_{48}O_2$	416.68	vitamin E
23.	23.566	1-Triacontanol	1.29	$C_{30}H_{62}O$	438.81	Fatty alcohol
24.	24.684	dlalphaTocopherol	2.19	$C_{29}H_{50}O_2$	430	vitamin E
25.	25.149	Cholesterol	0.94	$C_{27}H_{46}O$	386.65	Phytosterol
26.	29.389	β-Sitosterol	5.95	$C_{29}H_{50}O$	414	Phytosterol
27.	30.283	Lupenyl acetate	0.93	$C_{32}H_{52}O_2$	468	Tri- terpenes
28.	30.447	Ursodeoxycholic acid (Ursodiol)	0.89	$C_{24}H_{40}O_4$	392	Secondary bile acids
29.	30.818	Methyl commate A	14.21	$C_{32}H_{52}O_4$	500	Triterpenes glycoside
30.	31.341	Lupeol	3.12	$C_{30}H_{50}O$	426.73	Triterpenoid
31.	32.008	Betulin	2.93	$C_{30}H_{50}O_2$	442.72	Triterpene
32.	32.139	alphaAmyrin acetate	2.32	$C_{32}H_{52}O_2$	468	Phytosterol
33.	34.788	Sclareolide	1.28	$C_{16}H_{26}O_2$	250.38	Sesquiterpene
34.	36.699	Friedelin	19.91	$C_{30}H_{50}O$	426.73	Pentacyclic triterpene

Table-4: Activity of phytocomponents identified in the methanolic fruit extract of *M. emarginata*.

1. 7.450	S.No	R.T	Name of the Compound	Peak Area %	M.F	M.Wt	Compound Nature
22. 10.652	1.	7.450	4H-Pyran-4-one, 2,3-dihydro-3,5-	0.49	$C_6H_8O_4$	144	
3. 12.549 1.2.3.4.5-Cyclohexanepentol 23.17 C ₃ H ₃ O ₂ 164 4. 13.867 Pentadecanoic acid, 14-methyl-, methyl ester 0.51 C ₁₇ H ₃₂ O ₂ 270 Fatty acid 5. 14.116 n-Hexadecanoic acid, 14-methyl-, methyl ester 0.19 C ₁₈ H ₃₂ O ₂ 256 Fatty acid 6. 14.367 6.6-Dimethyleycyclootea-2,4-dienone 0.28 C ₁₈ H ₃₂ O ₂ 236 Fatty acid 7. 14.519 Eicosanoic acid, methyl ester 0.19 C ₁₈ H ₃₂ O ₂ 296 Fatty acid 8. 15.141 Octadecanoic acid, methyl ester 0.19 C ₁₈ H ₃₂ O ₂ 298 Fatty acid 9. 15.141 Octadecanoic acid, methyl ester 0.75 C ₁₈ H ₃₂ O ₂ 298 Fatty acid 10. 15.280 9-Octadecanoic acid, 27.75 C ₁₈ H ₃₂ O ₂ 282 Unsaturated fatty acid 11. 15.375 Octadecanoic acid, 24-ydroxy-1- (hydroxymethylethyl ester 0.97 C ₁₈ H ₃₂ O ₂ 284 Saturated fatty acid 12. 17.637 Hexadecanoic acid, 24-ydroxy-1- (hydroxymethylethyl ester 0.97 C ₁₈ H ₃₂ O ₂ 284 Saturated fatty acid 13. 17.708 n-Octadecanal 0.28 C ₁₈ H ₃₀ O ₂ 286 Saturated fatty acid 14. 17.931 1,2-Benzenedicarboxylic acid, dioctyl ester 0.98 C ₁₈ H ₃₀ O ₂ 268 15. 18.106 Pentadecane, 8-hexyl- 0.17 C ₂₁ H ₄₄ 296 16. 18.816 1H-Indole-3-chanamine 0.62 C ₁₈ H ₃₀ O ₄ 390 18. 19.082 Valerenol 5.51 C ₁₈ H ₃₀ O ₄ 220 Sesquiterpenoid 19. 19.230 Alpha-Monostarin 7.80 C ₁₈ H ₂₀ O ₂ 220 Sesquiterpenoid 19. 19.230 Alpha-Monostarin 7.80 C ₁₈ H ₂₀ O ₂ 220 Sesquiterpenoid 21. 19.759 N-Nonadecane 0.48 C ₁₈ H ₃₀ O ₄ 204.3 Volatic organic hydrocarbon S-one C ₁₈ H ₃₀ O ₄ 204.3 Volatic organic hydrocarbon C ₁₈ H ₃₀ O ₄ 204.3 Volatic organic hydrocarbon C ₁₈ H ₃₀ O ₄ 204.3 Volatic organic hydrocarbon C ₁₈ H ₃₀ O ₄ 204.3 Volatic organic hydrocarbon C ₁₈ H ₃₀ O ₄ 204.3 Volatic organic hydrocarbon C ₁₈ H ₃₀ O ₄ 204.3 Volatic organic hydrocarbon C ₁₈ H ₃₀ O ₄ 204.3 Volatic org			dihydroxy-6-methyl-				
4							Fragrance agent
methyl ester	3.			23.17	$C_6H_{12}O_5$	164	
5. 14.116	4.	13.867		0.51	$C_{17}H_{34}O_2$	270	Fatty acid
7. 14.519 Eicosanoic acid, methyl ester 0.19 C ₃ H ₃ G ₂ 236 Fatty acid 8. 15.014 S-Octadecenoic acid, methyl ester 7.12 C ₁₀ H ₃ G ₂ 296 Fatty acid 9. 15.141 Octadecanoic acid, methyl ester 0.99 C ₁₀ H ₃ G ₂ 298 Fatty acid 10. 15.280 9-Octadecenoic acid 7.75 C ₁₈ H ₃ G ₂ 282 Unsaturated fatty acid 11. 15.375 Octadecanoic acid (Stearie acid) 2.72 C ₁₈ H ₃ G ₂ 284 Saturated fatty acid 12. 17.637 Hexadecanoic acid, 2-hydroxy-1 0.97 C ₁₉ H ₃ G ₄ 330 Fatty acid 13. 17.708 n-Octadecanal 0.28 C ₁₈ H ₃ G ₄ 268 14. 17.931 1.2-Benzenedicarboxylic acid, 0.28 C ₂₈ H ₃ G ₄ 390 15. 18.106 Pentadecane, 8-hexyl- 0.17 C ₂₁ H ₄₄ 296 16. 18.816 H1-Indole-3-chanamine 0.62 C ₁₀ H ₁ N ₂ 160 17. 18.882 n-Hencicosane 1.10 C ₂₁ H ₄₄ 296 18. 19.082 Valerenol 5.51 C ₁₃ H ₄ G ₄ 220 Sesquiterpenoid 19. 19.230 Alpha-Monostearin 7.80 C ₂₁ H ₄ G ₄ 388 20. 19.590 1,4,4,7a-Tetramethyl-2,4,5,6,7,7a-hexahydro-1H-indene-1,7-diol hexahydro-1H-indene-1,7-diol hexahydro-1H-indene-1,7-diol hexahydro-1H-indene-1,7-diol 0.48 C ₁₀ H ₄₀ 268 Saturated aliphatic hydrocarbon Sevehellene 2.42 C ₁₃ H ₃₂ 204.3 Volatile organic hydrocarbon Sevehellene 2.42 C ₁₃ H ₃₄ 204.3 Volatile organic hydrocarbon Sevehellene 2.42 C ₁₃ H ₃₄ 204.3 Volatile organic hydrocarbon Sevehellene 2.05 C ₁₀ H ₁₄ G ₄ 358 Sesquiterpene Sevene Seve	5.	14.116		3.22	C ₁₆ H ₃₂ O ₂	256	Fatty acid
8. 15.014 8-Octadecenoic acid, methyl ester 7.12 C ₁₀ H ₃₀ O ₂ 296 Fatty acid 9. 15.141 Octadecenoic acid, methyl ester 0.99 C ₁₀ H ₃₀ O ₂ 298 Fatty acid 10. 15.280 9-Octadecenoic acid 7.75 C ₁₀ H ₃₀ O ₂ 282 Unsaturated fatty acid 11. 15.375 Octadecanoic acid, 2-hydroxy-1- (hydroxymethylbethyl ester 0.97 C ₁₀ H ₃₀ O ₄ 330 Fatty acid 12. 17.637 Hexadecanoic acid, 2-hydroxy-1- (hydroxymethylbethyl ester 0.97 C ₁₀ H ₃₀ O ₄ 330 Fatty acid 13. 17.708 n-Octadecanal 0.28 C ₁₀ H ₃₀ O ₄ 390 14. 17.931 1,2-Benzencdicarboxylic acid, dioctyl ester 0.28 C ₂₄ H ₃₀ O ₄ 390 15. 18.106 Pentadecane, 8-hexyl- 0.17 C ₂₁ H ₄₄ 296 16. 17. 18.816 1H-Indole-3-ethanamine 0.62 C ₁₀ H ₁₂ O ₂ 220 Sesquiterpenoid 18. 19.082 Valerenol 5.51 C ₁₀ H ₂₀ O ₂ 220 <td< td=""><td>6.</td><td>14.367</td><td>6,6-Dimethylcycloocta-2,4-dienone</td><td>0.28</td><td>$C_{10}H_{14}O$</td><td>150</td><td></td></td<>	6.	14.367	6,6-Dimethylcycloocta-2,4-dienone	0.28	$C_{10}H_{14}O$	150	
9, 15.141 Octadecanoic acid, methyl ester 0.99 C ₁₉ H ₃₆ O ₂ 298 Fatty acid	7.	14.519	Eicosanoic acid, methyl ester	0.19	$C_{21}H_{42}O_2$		Fatty acid
10. 15.280	8.	15.014	8-Octadecenoic acid, methyl ester	7.12	$C_{19}H_{36}O_2$	296	Fatty acid
Cleic Acid 11.	9.	15.141	Octadecanoic acid, methyl ester	0.99	$C_{19}H_{38}O_2$	298	
11. 15.375 Octadecanoic acid (Stearic acid) 2.72 C ₁₈ H ₃₆ O ₂ 284 Saturated fatty acid 12. 17.637 Hexadecanoic acid, 2-pydroxy-1- 0.97 C ₁₉ H ₃₆ O ₄ 330 Fatty acid (hydroxymethyl)ethyl ester 13. 17.708 n-Octadecanal 0.28 C ₁₈ H ₃₆ O ₄ 390	10.	15.280		7.75	$C_{18}H_{34}O_2$	282	Unsaturated fatty acid
12.	11.	15.375	Octadecanoic acid (Stearic acid)	2.72	C ₁₈ H ₃₆ O ₂	284	Saturated fatty acid
13. 17.708			Hexadecanoic acid, 2-hydroxy-1-				
14. 17.931	13.	17.708		0.28	C18H36O	268	
15.			1,2-Benzenedicarboxylic acid,				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	18 106		0.17	C21H44	296	
17. 18.882 n-Heneicosane 1.10 C ₂₁ H ₃₄ 296 18. 19.082 Valerenol 5.51 C ₁₅ H ₃₄ O 220 Sesquiterpenoid 19. 19.230 AlphaMonostearin 7.80 C ₂₁ H ₄₂ O ₄ 358 20. 19.590 1,4,4,7a-Tetramethyl-2,4,5,6,7,7a-hexahydro-1H-indene-1,7-diol 21. 19.759 N-Nonadecane 0.48 C ₁₉ H ₄₀ O 268 Saturated aliphatic hydrocarbon 22. 19.839 Germacrene A 2.89 C ₁₅ H ₂₄ 204.3 Volatile organic hydrocarbons (sesquiterpene) 23. 20.076 Seychellene 2.42 C ₁₅ H ₂₄ 204.3 Volatile organic hydrocarbons (sesquiterpene) 24. 20.237 Squalene 0.70 C ₃₀ H ₅₀ 410.7 Triterpene 25. 20.314 3-Amino-6-methyl-6,7-dihydro-9H-5-oxa-9-azabenzocyclohepten-8-one S-one 26. 20.768 Nonacosane 0.40 C ₂₉ H ₆₀ 408 Hydrocarbon 27. 20.862 Perillaldehyde 2.05 C ₁₀ H ₁₄ O 150.2 Monoterpenoid 28. 21.548 Isovellerdiol 8.56 C ₁₃ H ₂₄ O ₂ 236 Sesquiterpenes 29. 22.353 Andrographolide 1.84 C ₃₉ H ₃₀ O ₅ 350.4 diterpenoid 30. 23.569 1-Triacontanol 1.77 C ₃₀ H ₆₀ O 438.8 Fatty alcohol 31. 24.702 A-Tocopherol 0.80 C ₃₉ H ₃₀ O ₂ 430.7 Vitamin-E 32. 25.154 Cholesterol 1.40 C ₃₀ H ₅₀ O 430.7 Vitamin-E 33. 25.527 1H-Benzocyclohepten-7-ol, c ₂₃ A ₃ A ₃ A ₃ A ₅ A ₅ A ₅ R-octahydro-1,1,4a,7-tetramethyl-, cis- (Widdrol) 1.58 C ₂₉ H ₃₀ O ₂ 430.7 Vitamin-E 35. 27.669 Trilostane 0.87 C ₂₀ H ₂₀ NO 329.4 3β-hydroxysteroid dehydrogenase inhibitor delaydrogenase inhibitor dehydrogenase inhibitor dehydrogenase inhibitor dehydrogenase inhibitor dehydrogenase inhibitor dehydrogenase inhibitor dehydrogenase inhibitor delaydrogenase inhibitor delaydrogenase inhibitor delaydrogenase inhibitor delaydrogena							
18. 19.082							
19. 19.230 Alpha-Monostearin 7.80 C ₂₁ H ₄₂ O ₄ 358							Sesquiterpenoid
20. 19.590 1,4,4,7a-Tetramethyl-2,4,5,6,7,7a-hexahydro-1H-indene-1,7-diol 0.48 C ₁₉ H ₄₀ 268 Saturated aliphatic hydrocarbon 19.759 N-Nonadecane 0.48 C ₁₉ H ₄₀ 268 Saturated aliphatic hydrocarbon 22. 19.839 Germacrene A 2.89 C ₁₅ H ₂₄ 204.3 Volatile organic hydrocarbons (sesquiterpene) 23. 20.076 Seychellene 2.42 C ₁₅ H ₂₄ 204.3 Volatile organic hydrocarbons (sesquiterpene) 24. 20.237 Squalene 0.70 C ₃₀ H ₅₀ 410.7 Triterpene 25. 20.314 3-Amino-6-methyl-6,7-dihydro-9H-5-oxa-9-azabenzocyclohepten-8-one 26. 20.768 Nonacosane 0.40 C ₂₉ H ₆₀ 408 Hydrocarbon 27. 20.862 Perillaldehyde 2.05 C ₁₀ H ₁₄ O 150.2 Monoterpenoid 28. 21.548 Isovellerdiol 8.56 C ₁₅ H ₂₄ O 236 Sesquiterpenes 29. 22.353 Andrographolide 1.84 C ₂₀ H ₃₀ O ₅ 350.4 diterpenoid 30. 23.569 1-Triacontanol 1.77 C ₃₀ H ₆₂ O 438.8 Fatty alcohol 31. 24.702 A-Tocopherol 0.80 C ₂₉ H ₅₀ O 430.7 Vitamin-E 32. 25.154 Cholesterol 1.40 C ₃₀ H ₅₀ O 430.7 Vitamin-E 33. 25.527 1H-Benzocyclohepten-7-ol, etramethyl-, cis- (Widdrol) 2,3,4,43,5,6,7.8-octahydro-1,1,4a,7-tetramethyl-, cis- (Widdrol) 34. 27.261 alpha-Tocopherol 1.58 C ₂₉ H ₅₀ O 222.3 Odorous compound 36. 27.985 Evonine 3.36 C ₃₆ H ₄₃ NO ₁₇ 761 Alkaloid 37. 29.379 B-Sitosterol 2.11 C ₂₉ H ₅₀ O 414.7 Phytosterol 38. 29.538 1,4,8-Cycloundecatriene, 2,6,6,9-tetramethyl-, (E,E,E)-(alpha-Caryophyllene) 4.84 204.35 20							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1,4,4,7a-Tetramethyl-2,4,5,6,7,7a-				
23. 20.076 Seychellene 2.42 C ₁₅ H ₂₄ 204.3 24. 20.237 Squalene 0.70 C ₃₀ H ₅₀ 410.7 Triterpene 25. 20.314 3-Amino-6-methyl-6,7-dihydro-9H-5-oxa-9-azabenzocyclohepten-8-one O.20 O.20 26. 20.768 Nonacosane 0.40 C ₂₉ H ₆₀ 408 Hydrocarbon 27. 20.862 Perillaldehyde 2.05 C ₁₀ H ₁₄ O 150.2 Monoterpenoid 28. 21.548 Isovellerdiol 8.56 C ₁₅ H ₂₄ O ₂ 236 Sesquiterpenes 29. 22.353 Andrographolide 1.84 C ₂₀ H ₃₀ O ₅ 350.4 diterpenoid 30. 23.569 1-Triacontanol 1.77 C ₃₀ H ₆₂ O 438.8 Fatty alcohol 31. 24.702 A-Tocopherol 0.80 C ₂₉ H ₅₀ O ₂ 430.7 Vitamin-E 32. 25.154 Cholesterol 1.40 C ₃₀ H ₅₀ 410.7 Triterpene 33. 25.527 1H-Benzocyclohepten-7-ol, 2,3,4,4a,5,6,7,8-octahydro-1,1,4a,7-tetramethyl-, cis- (Widdrol) 34. 27.261 alpha-Tocopherol 1.58 C ₂₉ H ₅₀ O ₂ 430 Vitamin-E 35. 27.669 Trilostane 0.87 C ₂₀ H ₂₇ NO 329.4 3β-hydroxysteroid dehydrogenase inhibitor 36. 27.985 Evonine 3.36 C ₃₆ H ₄₃ NO ₁₇ 761 Alkaloid 37. 29.379 B-Sitosterol 2.11 C ₂₀ H ₅₀ O 414.7 Phytosterol 38. 29.538 1,4,8-Cycloundecatriene, 2,6,6,9-tetramethyl-, (E,E,E)-tetramethyl-, (E,E,E)-(alpha-Caryophyllene)	21.	19.759		0.48	C ₁₉ H ₄₀	268	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							hydrocarbons
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2.42			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24.						Triterpene
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25.	20.314	9H-5-oxa-9-azabenzocyclohepten-	0.38		192.2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26.	20.768	Nonacosane	0.40	$C_{29}H_{60}$	408	Hydrocarbon
29. 22.353 Andrographolide 1.84 $C_{20}H_{30}O_5$ 350.4 diterpenoid 30. 23.569 1-Triacontanol 1.77 $C_{30}H_{62}O$ 438.8 Fatty alcohol 31. 24.702 A-Tocopherol 0.80 $C_{29}H_{50}O_2$ 430.7 Vitamin- E 32. 25.154 Cholesterol 1.40 $C_{30}H_{50}$ 410.7 Triterpene 33. 25.527 1H-Benzocyclohepten-7-ol, 2,3,4,4a,5,6,7,8-octahydro-1,1,4a,7-tetramethyl-, cis- (Widdrol) 0.35 $C_{15}H_{26}O$ 222.3 Odorous compound 34. 27.261 alphaTocopherol 1.58 $C_{29}H_{50}O_2$ 430 Vitamin- E 35. 27.669 Trilostane 0.87 $C_{20}H_{27}NO$ 329.4 $\frac{3\beta$ -hydroxysteroid dehydrogenase inhibitor 36. 27.985 Evonine 3.36 $C_{36}H_{43}NO_{17}$ 761 Alkaloid 37. 29.379 B-Sitosterol 2.11 $C_{29}H_{50}O$ 414.7 Phytosterol 38. 29.538 1,4,8-Cycloundecatriene, 2,6,6,9-tetramethyl			ž .				1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
32. 25.154 Cholesterol 1.40 $C_{30}H_{50}$ 410.7 Triterpene 33. 25.527 1H-Benzocyclohepten-7-ol, 2,3,4,4a,5,6,7,8-octahydro-1,1,4a,7-tetramethyl-, cis- (Widdrol) 0.35 $C_{15}H_{26}O$ 222.3 Odorous compound 34. 27.261 alphaTocopherol 1.58 $C_{29}H_{50}O_2$ 430 Vitamin- E 35. 27.669 Trilostane 0.87 $C_{20}H_{27}NO$ 329.4 $\frac{3\beta-hydroxysteroid}{dehydrogenase inhibitor}$ 36. 27.985 Evonine 3.36 $C_{36}H_{43}NO_{17}$ 761 Alkaloid 37. 29.379 B-Sitosterol 2.11 $C_{29}H_{50}O$ 414.7 Phytosterol 38. 29.538 1,4,8-Cycloundecatriene, 2,6,6,9-tetramethyl-, (E,E,E)-(alpha- Caryophyllene) 1.36 $C_{15}H_{24}$ 204.35 sesquiterpenes							,
33. 25.527							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
34. 27.261 alphaTocopherol 1.58 $C_{29}H_{50}O_2$ 430 Vitamin- E 35. 27.669 Trilostane 0.87 $C_{20}H_{27}NO$ 329.4 3β -hydroxysteroid dehydrogenase inhibitor 36. 27.985 Evonine 3.36 $C_{36}H_{43}NO_{17}$ 761 Alkaloid 37. 29.379 B-Sitosterol 2.11 $C_{29}H_{50}O$ 414.7 Phytosterol 38. 29.538 1,4,8-Cycloundecatriene, 2,6,6,9-tetramethyl-, (E,E,E)-(alpha- Caryophyllene) 1.36 $C_{15}H_{24}$ 204.35 sesquiterpenes	33.	25.527	2,3,4,4a,5,6,7,8-octahydro-1,1,4a,7-	0.35	C ₁₅ H ₂₆ O	222.3	Odorous compound
35. 27.669 Trilostane 0.87 $C_{20}H_{27}NO$ 329.4 3β-hydroxysteroid dehydrogenase inhibitor 36. 27.985 Evonine 3.36 $C_{36}H_{43}NO_{17}$ 761 Alkaloid 37. 29.379 B-Sitosterol 2.11 $C_{29}H_{50}O$ 414.7 Phytosterol 38. 29.538 1,4,8-Cycloundecatriene, 2,6,6,9-tetramethyl-, (E,E,E)-(alpha- Caryophyllene) 1.36 $C_{15}H_{24}$ 204.35 sesquiterpenes		27.261		1.58	$C_{29}H_{50}O_2$	430	
37. 29.379 B-Sitosterol 2.11 C ₂₉ H ₅₀ O 414.7 Phytosterol 38. 29.538 1,4,8-Cycloundecatriene, 2,6,6,9-tetramethyl-, (E,E,E)-(alpha- Caryophyllene) 1.36 C ₁₅ H ₂₄ 204.35 sesquiterpenes							dehydrogenase inhibitor
38. 29.538 1,4,8-Cycloundecatriene, 2,6,6,9- tetramethyl-, (E,E,E)- (alpha- Caryophyllene) 1.36 C ₁₅ H ₂₄ 204.35 sesquiterpenes							
tetramethyl-, (E,E,E)- (alpha- Caryophyllene)							
	38.	29.538	tetramethyl-, (E,E,E)-	1.36	C ₁₅ H ₂₄	204.35	sesquiterpenes
	39.	31.547	Cycloartenol	2.48	C ₃₀ H ₅₀ O	426.72	Phytostanol

In methanol root extract of *M. emarginata* the highest peak area (%) of 26.56 was obtained by methyl commate A (triterpenes glycoside) (retention-time 30.814) and the lowest peak area (%) of 0.18 was obtained by 1- hexadecanol (retention-time 11.425) (Table-1, Fig. A). Whereas, in methanol stem extract the highest peak area (%) of 19.86 was obtained by 9- octadecenoic acid (Z)- (retention-time 15.282) and the lowest peak area (%) of 0.34 was obtained by pentadecane, 8-hexyl- (retention-time 18.106) (Table-2, Fig. B).In methanolic leaf extract *M. emarginata* the highest peak area (%) of 19.91 was obtained by friedelin (pentacyclic triterpene) (retention-time 36.699) and the lowest peak area (%) of 0.34 was obtained by n- hexadecane sulfonyl chloride (retention-time 18.086) (Table-3, Fig. C). However, in fruit extract of this plant the highest peak area (%) of 23.17 was obtained by 1,2,3,4,5-cyclohexanepentol (retention-time 12.549) and the lowest peak area (%) of 0.17 was obtained by pentadecane, 8-hexyl- (retention-time 18.106) (Table-4), Fig D.

Fig. A-D: GC/MS spectrogram for the methanolic (a) root (b) stem (c) leaf and (d) fruit extract of *Maytenus emarginata*

In the present study, methanolic extract of the different plant parts of the *M*. *emarginata* samples were analyzed for the first time. The comparison of the mass spectrum with the NIST database library gave more than 90% match as well as a confirmatory compound structure match. This work will help to identify the compounds, which may be used in body products, drugs, pharmaceutical and therapeutic value.

REFERENCES

- 1. Jain, S.K., 1979. Medicinal plants. National Book Trust, India, pp. 1.
- 2. Leung, A.Y., 1980. Encyclopedia common natural ingredients used in food drugs and cosmetics. John Wilcy, New York.
- 3. Bruning, R. and Wagner, H. 1978. Phytochemistry, 17: 1821.
- 4. Munoz, O., Penaloza, A., Gonzalez, A. G., Ravelo, A. G., Bazzocchi, I. L. and Alvarenga, N. L. 1996. In studies in Natural Products chemistry, ed. Atta-ur-Rahman. *Elsevier*, 18:739-783.
- 5. Crombie, L., Crombie, W. M. L. and Whiting, D. A. 1990. The Alkaloids, 39,139.
- 6. Dubravkova, L. 1998. Acta Fac. Pharm. Univ. Lomenianae. 42: 141.
- 7. Hussein, G., 1999. Inhibitory effects of Sudanese plant extract on HIV-1 replication and HIV-1 protease. *Phytotherapy Res*, 13: 31-36.
- 8. Tin-wa, M., Farnsworth, N. R., Fong, H. S. S., Blomster, R.N., Tojanek, J., Abraham, D.I., Persinos, G. J. and Dokosi, O.B. 1971. Ethnolic extract of *M. senegalensis* demonstrated cytotoxic effects against carcinoma in cell cultures and Leukemia in mice. *Journal of Natural Products*, 34: 79-87.
- 9. Spivey, A. C., Weston, M. and Woodhead, S. 2002. Celastraceae sesquiterpe-noids: biological actiovity and synthesis . *Chem Soc Rev* , 31: 43-59.
- 10. Kothari, M. J. 2000. Ethnobotany in Human health care of Chikhaldara, Amravati district in Maharashtra state, India. Ethnobotanty and medicinal plants of Indian subcontinent. Scientific publishers (India) Jodhapur: 273-281.
- 11. Pullaiah, T. 2006. Encyclopedia of world medicinal plants, Sal. Paratyphi. Regency Publication, 1st Edn. New Delhi, pp. 1316-1317.
- 12. Agrawal, M. and Nag, T. N. 2009. Seasonal variations in flavonoid content in *Maytenus emarginata* (Willd.) Ding Hou. *J. Indian. Bnot. Soc* .88(3 & 4): 177-180.
- Bhandari, M. M. 1990. Flora of Indian Desert, 11ed. M. P. S. Publisher, Jodhpur, India.